
Kosten reduzieren – Umwelt entlasten

Zielsetzungen Entsorgungskonzept

- Entsorgungskosten reduzieren
- => Wirtschaftlichkeit erhöhen
- Ökobilanz des Betriebs und der Produkte verbessern
- => Umwelt entlasten

Ressourcen nachhaltig bewirtschaften

Vorgehen

- 1. Istzustand erfassen
- 2. Sollzustand: Vorschläge erarbeiten
- 3. Sollzustand: Vorschläge umsetzen
- 4. Erfolgskontrolle durchführen

1. Istzustand

Brennbare Abfälle zur Kehrichtverbrennungsanlage (KVA) Relevante Parameter

A (t)	Abfallmenge zur KVA
Ka (t)	Containerkapazität
Na	Anzahl Transporte zur KVA
Pa (CHF/t)	Verbrennungspreis KVA
Ta (CHF/t)	Transportkosten zur KVA

1.Istzustand

Brennbare Abfälle zur KVA Berechnungsbeispiel

A (t)	85
Ka (t)	3.4
Na	25
Pa (CHF/t)	206.50
Ta (CHF/Fahrt)	280

⇒Verbrennungspreis total CHF 17'553.-

⇒ Transportkosten total CHF 7'000.-

⇒Entsorgungskosten total CHF 24'553.-

1.Istzustand

Wertstoffe zum Recyclingbetrieb Relevante Parameter

W(t)	Wertstoffmenge zum Recyclingbetrieb
Kw (t)	Containerkapazität Wertstoffe
Nw	Anzahl Transporte zum Recyclingbetrieb
Ew (CHF/t)	Erlös Recycling
Zw (CHF/t)	Zuzahlung Recycling
Tw (CHF/t)	Transportkosten zum Recyclingbetrieb

1. Istzustand

Wertstoffe zum Recyclingbetrieb Berechnungsbeispiel

W (t) Papier	15	⇒Erlös total CHF -300 ⇒ Transportkosten total
Kw (t)	2.7	CHF 1'920 ⇒Recyclingkosten total CHF 1'620
Na	6	
Ew (CHF/t)	-20	Kennzahlen Istzustand -KHK CHF 24'553 Recycling CHF 1'620
Tw (CHF/Fahrt)	320	- total CHF 26'173 - RC-Quote = 15%

Priorität 1: Abfall vermeiden

1	Ausschussrate verkleinern: Effizienz erhöhen
	⇒ weniger Ressourcen- verbrauch
	⇒ weniger Abfall
2	Mehrweggebinde einsetzen z.B. Mehrweg- paletten
3	Optimierte Verpackung: "Nur soviel wie nötig"
4	Kleinere Wandstärken: "Schlank dimensionieren
5	Usw.



Priorität 1: Abfall vermeiden Berechnungsbeispiel

Durch Reduktion der Ausschussrate konnte die jährliche Abfallmenge um 5% reduziert werden, d.h. neu 95 statt 100 t/Jahr.

Priorität 2: Abfall verwerten (rezyklieren)

1	Papier, Karton an der Quelle trennen
2	Sortenreine Kunststoffe an der Quelle trennen
3	Verbundstoffe durch Einstoffsysteme z.B. auf Basis Karton ersetzen
4	Organische Abfälle z.B. aus Kantine kompostieren
5	Usw.

Priorität 2: Abfall verwerten (rezyklieren)
Berechnungsbeispiel 1

Karton separat sammeln

Menge = 7 t/Jahr

Erlös: CHF 10.-/t

Kapazität: 2.5 t/Transport

Transportkosten: CHF 320.-/Transp.

⇒ 3 Transporte

⇒ Erlös CHF -70.-

⇒ Transport CHF 960.-

⇒Total CHF 890.-

Priorität 2: Abfall verwerten (rezyklieren)
Berechnungsbeispiel 2

```
sortenreine Kunststoffe separat sammeln
```

Menge = 10 t/Jahr

Erlös: CHF 20.-/t

Kapazität: 3.5 t/Transport

Transportkosten: CHF 320.-/Transp.

⇒ 3 Transporte

⇒ Erlös CHF -200.-

⇒ Transport CHF 960.-

⇒Total CHF 760.-

Sollzustand: Z.B. PET in der Kantine separat sammeln

Berechnungsbeispiel: Zusammenfassung

A (t)	63
Ka (t)	3.4
Na	19
Pa (CHF/t)	186.50
Ta (CHF/Fahrt)	280

⇒Verbrennungskosten: CHF 11'750.- \Rightarrow Transportkosten: CHF 5'320.-⇒Verbrennung total: CHF 17'070.-Kennzahlen Sollzustand CHF 17'070.--KVA - Recycling CHF 3'270.-- total CHF 20'340.-- RC-Quote = 34 %

3. Sollzustand: Vorschläge umsetzen

Empfehlungen

- Schrittweises Vorgehen
- Massnahme mit grösster Verbesserung zuerst einführen
- -Mitarbeitende über Zielsetzung und Aufbau des Entsorgungskonzeptes informieren/motivieren
- Z.B. Event durchführen
- Usw.

4. Erfolgskontrolle Wirtschaftlichkeit

IST	KVA	Recycling	total	
Menge (t)	85	15	100	
Kosten (CHF)	24'553	3 1'620	26'173	
SOLL				
Menge (t)	63	32	95	
Kosten (CHF)	17'070) 3'270	20'340	

=> Kosteneinsparung CHF 5'833.- pro Jahr

4. Erfolgskontrolle Ökologie: Z.B. Papier

alle Angaben pro kg Quelle: EMPA SG 2007	КНК	Primärpro- duktion	Recycling- bonus (vermiedene Umwelt- belastung)
Energieauf- wand nicht erneuerbar (MJ eq.)	0.29	21.9	- 17.5
Treibhaus- potential (kg CO ₂ eq.)	0.0237	1.16	- 0.928
Umweltbe- lastungspunkte 97	180	1'610	- 1'290

4. Erfolgskontrolle Ökologie: Z.B. Karton

alle Angaben pro kg Quelle: EMPA SG 2007	КНК	Primärpro- duktion	Recycling- bonus (vermiedene Umwelt- belastung)
Energieauf- wand nicht erneuerbar (MJ eq.)	0.362	16.9	- 13.5
Treibhaus- potential (kg CO ₂ eq.)	0.0243	1.31	- 1.05
Umweltbe- lastungspunkte 97	103	1'400	- 1'120

4. Erfolgskontrolle Ökologie: Z.B. PE

(Polyethylen)

alle Angaben pro kg Quelle: EMPA SG 2007	КНК	Primärpro- duktion	Recycling- bonus (vermiedene Umwelt- belastung)
Energieauf- wand nicht erneuerbar (MJ eq.)	0.224	89.3	- 80.4
Treibhaus- potential (kg CO ₂ eq.)	3	2.64	- 2.38
Umweltbe- lastungspunkte 97	702	2'660	- 2'390

Waste is the only
Manufactured Product
that is not sold. Smart

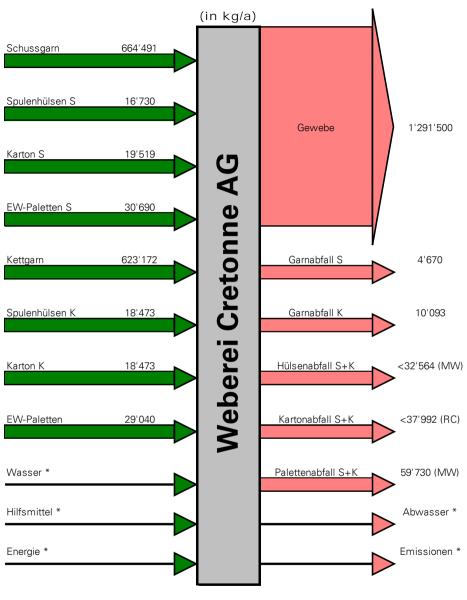
operations know that they have two choices: start selling it or stop making it."

Beispiel: Weberei Cretonne AG

Darstellung der Materialströme

- Istzustand => Bild 23
- Sollzustand => Bild 24

Input


- Schussgarn
- Kettgarn
- Spulenhülsen
- -Kartonschachteln
- Einweg (EW)- Paletten
- usw.

Output

- Gewebe
- Garnabfall
- Hülsenabfall
- Kartonabfall
- Palettenabfall
- usw.

Istzustand (in kg/a) Schussgarn 664'505 Spulenhülsen S 16'730 1'291'500 Gewebe 19'519 Karton S EW-Paletten S 30'690 Cretonne 623'212 4'684 Kettgarn Garnabfall S Spulenhülsen K 15'834 Garnabfall K 10'134 Weberei 18'473 32'564 Karton K Hülsenabfall S+K EW-Paletten 29'040 37'992 Kartonabfall S+K Wasser * Palettenabfall S+K 59'730 Hilfsmittel * Abwasser * Energie * Emissionen *

- S Schuss
- K Kette
- EW Einweg
- * Optimierung in Phase 2

Massnahmen:

- Optimale Maschineneinstellung: Reduktion Garnabfall (S-0,3%, K-0,4%)
- Mehrweg-Hülsen und Paletten verweder
- Wertstoffe rezyklieren (Karton)

- S Schuss
- K Kette
- ----
- EW Einweg
- MW Mehrweg RC Recycling
- Optimierung in Phase 3